2,955 research outputs found

    Interfaces of the Agriculture 4.0

    Get PDF
    The introduction of information technologies in the environmental field is impacting and changing even a traditional sector like agriculture. Nevertheless, Agriculture 4.0 and data-driven decisions should meet user needs and expectations. The paper presents a broad theoretical overview, discussing both the strategic role of design applied to Agri-tech and the issue of User Interface and Interaction as enabling tools in the field. In particular, the paper suggests to rethink the HCD approach, moving on a Human-Decentered Design approach that put together user-technology-environment and the importance of the role of calm technologies as a way to place the farmer, not as a final target and passive spectator, but as an active part of the process to aim the process of mitigation, appropriation from a traditional cultivation method to the 4.0 one

    Predicting lorawan behavior. How machine learning can help

    Get PDF
    Large scale deployments of Internet of Things (IoT) networks are becoming reality. From a technology perspective, a lot of information related to device parameters, channel states, network and application data are stored in databases and can be used for an extensive analysis to improve the functionality of IoT systems in terms of network performance and user services. LoRaWAN (Long Range Wide Area Network) is one of the emerging IoT technologies, with a simple protocol based on LoRa modulation. In this work, we discuss how machine learning approaches can be used to improve network performance (and if and how they can help). To this aim, we describe a methodology to process LoRaWAN packets and apply a machine learning pipeline to: (i) perform device profiling, and (ii) predict the inter-arrival of IoT packets. This latter analysis is very related to the channel and network usage and can be leveraged in the future for system performance enhancements. Our analysis mainly focuses on the use of k-means, Long Short-Term Memory Neural Networks and Decision Trees. We test these approaches on a real large-scale LoRaWAN network where the overall captured traffic is stored in a proprietary database. Our study shows how profiling techniques enable a machine learning prediction algorithm even when training is not possible because of high error rates perceived by some devices. In this challenging case, the prediction of the inter-arrival time of packets has an error of about 3.5% for 77% of real sequence cases

    A multi-objective optimization approach for the synthesis of granular computing-based classification systems in the graph domain

    Get PDF
    The synthesis of a pattern recognition system usually aims at the optimization of a given performance index. However, in many real-world scenarios, there exist other desired facets to take into account. In this regard, multi-objective optimization acts as the main tool for the optimization of different (and possibly conflicting) objective functions in order to seek for potential trade-offs among them. In this paper, we propose a three-objective optimization problem for the synthesis of a granular computing-based pattern recognition system in the graph domain. The core pattern recognition engine searches for suitable information granules (i.e., recurrent and/or meaningful subgraphs from the training data) on the top of which the graph embedding procedure towards the Euclidean space is performed. In the latter, any classification system can be employed. The optimization problem aims at jointly optimizing the performance of the classifier, the number of information granules and the structural complexity of the classification model. Furthermore, we address the problem of selecting a suitable number of solutions from the resulting Pareto Fronts in order to compose an ensemble of classifiers to be tested on previously unseen data. To perform such selection, we employed a multi-criteria decision making routine by analyzing different case studies that differ on how much each objective function weights in the ranking process. Results on five open-access datasets of fully labeled graphs show that exploiting the ensemble is effective (especially when the structural complexity of the model plays a minor role in the decision making process) if compared against the baseline solution that solely aims at maximizing the performances

    Relaxed Dissimilarity-based Symbolic Histogram Variants for Granular Graph Embedding

    Get PDF
    Graph embedding is an established and popular approach when designing graph-based pattern recognition systems. Amongst the several strategies, in the last ten years, Granular Computing emerged as a promising framework for structural pattern recognition. In the late 2000\u2019s, symbolic histograms have been proposed as the driving force in order to perform the graph embedding procedure by counting the number of times each granule of information appears in the graph to be embedded. Similarly to a bag-of-words representation of a text corpora, symbolic histograms have been originally conceived as integer-valued vectorial representation of the graphs. In this paper, we propose six \u2018relaxed\u2019 versions of symbolic histograms, where the proper dissimilarity values between the information granules and the constituent parts of the graph to be embedded are taken into account, information which is discarded in the original symbolic histogram formulation due to the hard-limited nature of the counting procedure. Experimental results on six open-access datasets of fully-labelled graphs show comparable performance in terms of classification accuracy with respect to the original symbolic histograms (average accuracy shift ranging from -7% to +2%), counterbalanced by a great improvement in terms of number of resulting information granules, hence number of features in the embedding space (up to 75% less features, on average)

    Complexity vs. performance in granular embedding spaces for graph classification

    Get PDF
    The most distinctive trait in structural pattern recognition in graph domain is the ability to deal with the organization and relations between the constituent entities of the pattern. Even if this can be convenient and/or necessary in many contexts, most of the state-of the art classi\ufb01cation techniques can not be deployed directly in the graph domain without \ufb01rst embedding graph patterns towards a metric space. Granular Computing is a powerful information processing paradigm that can be employed in order to drive the synthesis of automatic embedding spaces from structured domains. In this paper we investigate several classi\ufb01cation techniques starting from Granular Computing-based embedding procedures and provide a thorough overview in terms of model complexity, embedding space complexity and performances on several open-access datasets for graph classi\ufb01cation. We witness that certain classi\ufb01cation techniques perform poorly both from the point of view of complexity and learning performances as the case of non-linear SVM, suggesting that high dimensionality of the synthesized embedding space can negatively affect the effectiveness of these approaches. On the other hand, linear support vector machines, neuro-fuzzy networks and nearest neighbour classi\ufb01ers have comparable performances in terms of accuracy, with second being the most competitive in terms of structural complexity and the latter being the most competitive in terms of embedding space dimensionality

    Qualitative attributes of meat from Teramana goat kids, an Italian native breed of the Abruzzo region

    Get PDF
    The aim of this work was the characterization of the qualitative aspects of meat obtained from Teramana goats, an Italian indigenous breed of the Abruzzo region. Specifically, the study included a comparison with meat samples deriving from Saanen goat kids reared in the same environment and applying the same feeding protocol

    On Information Granulation via Data Filtering for Granular Computing-Based Pattern Recognition: A Graph Embedding Case Study

    Get PDF
    Granular Computing is a powerful information processing paradigm, particularly useful for the synthesis of pattern recognition systems in structured domains (e.g., graphs or sequences). According to this paradigm, granules of information play the pivotal role of describing the underlying (possibly complex) process, starting from the available data. Under a pattern recognition viewpoint, granules of information can be exploited for the synthesis of semantically sound embedding spaces, where common supervised or unsupervised problems can be solved via standard machine learning algorithms. In this companion paper, we follow our previous paper (Martino et al. in Algorithms 15(5):148, 2022) in the context of comparing different strategies for the automatic synthesis of information granules in the context of graph classification. These strategies mainly differ on the specific topology adopted for subgraphs considered as candidate information granules and the possibility of using or neglecting the ground-truth class labels in the granulation process and, conversely, to our previous work, we employ a filtering-based approach for the synthesis of information granules instead of a clustering-based one. Computational results on 6 open-access data sets corroborate the robustness of our filtering-based approach with respect to data stratification, if compared to a clustering-based granulation stage

    Semantic Similarity Tailored on the Application Context

    Get PDF
    The paper proposes an approach to assess the semantic similarity among instances of an ontology. It aims to define a sensitive measurement of semantic similarity, which takes into account different hints hidden in the ontology definition and explicitly considers the application context. The similarity measurement is computed by analyzing, combining and extending some of the existing similarity measures and tailoring them according to the criteria induced by specific application context
    • …
    corecore